How do you integrate #sqrt(1-x^2)#?

1 Answer
Jul 3, 2016

#= 1/2 x sqrt(1-x^2) + 1/2 arcsin x + C #

Explanation:

use a trig sub.

the Pythagorean identity #cos^2 psi+ sin^2 psi = 1# so let #x = sin psi, dx = cos psi dpsi#

thus #int dx qquad sqrt(1-x^2)# becomes #int d psi qquad cos psi sqrt(1 - sin^2 psi)#

#= int d psi qquad cos^2 psi#

from there double angle it from #cos 2A = 2 cos^2 A - 1#

#= int d psi qquad (cos 2psi + 1)/2 #

#= 1/2 int d psi qquad (cos 2psi + 1)#

#= 1/2 ( 1/2 sin 2psi + psi) + C#

#= color{blue}{(sin 2psi)}/4 + psi/2 + C qquad star#

again double angling the blue term from #sin 2A = 2 sin A cos A#

we have

#sin 2 psi = 2 sin psi cos psi#

#=2 x sqrt(1-x^2)#

putting that into #star# we get

#= (2 x sqrt(1-x^2))/4 + (arcsin x)/2 + C #

#= 1/2 x sqrt(1-x^2) + 1/2 arcsin x + C #