How do you find the derivative of #y = x^2 e^(-x)#?
2 Answers
Jul 6, 2016
Explanation:
Jul 6, 2016
Explanation:
Differentiate using the
#color(blue)"product rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))# here
#g(x)=x^2rArrg'(x)=2x# and
#h(x)=e^(-x)rArrh'(x)=e^(-x) (-1)=-e^(-x)#
#"-------------------------------------------------------------------"#
Substitute these values into f'(x)
#f'(x)=x^2(-e^(-x))+e^(-x)(2x)=-x^2e^(-x)+2xe^(-x)#
#rArrdy/dx=xe^(-x)(2-x)#