How do you verify #sin 2x = (2 tan x)/(1+ tan² x)#?
2 Answers
Modifying only the right hand side of the equation, we should first notice that the fraction's denominator is a form of the Pythagorean Identity:
#sin^2x+cos^2x=1#
#=>" "sin^2x/cos^2x+cos^2x/cos^2x=1/cos^2x#
#=>" "color(blue)(barul(|color(white)(a/a)color(black)(tan^2x+1=sec^2x)color(white)(a/a)|#
Thus, we see that we can rewrite the fraction:
#(2tanx)/(1+tan^2x)=(2tanx)/(sec^2x)#
Recalling that
#(2tanx)/sec^2x=(2tanx)/(1/cos^2x)#
Now, instead of dividing by
#(2tanx)/(1/cos^2x)=2tanx*cos^2x#
Rewrite
#2tanx*cos^2x=(2sinx)/cosx*cos^2x#
The
#(2sinx)/cosx*cos^2x=(2sinx)/color(red)(cancel(color(black)(cosx)))*cos^color(red)(cancel(color(black)(2)))x=2sinxcosx#
This is the identity for
#color(brown)(barul(|color(white)(a/a)color(black)(2sinxcosx=sin2x)color(white)(a/a)|#
Thus, the equation is verified.