How do you integrate #int 1/sqrt(-e^(2x) +100)dx# using trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cesareo R. Jul 10, 2016 #1/10 int (dy)/cosy# Explanation: Making #e^{-x} = 10 cosy# we have #- e^{-x}dx = -10 sin y dy# and #dx = 10 siny/e^{-x}dy = tan y dy# so #int (dx)/sqrt(-e^(2x) +100) equiv 1/10int (tany)/sinydy = 1/10 int (dy)/cosy# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 1406 views around the world You can reuse this answer Creative Commons License