What is the projection of <3,4,-1 ><3,4,1> onto <-1,3,-6 ><1,3,6>?

1 Answer
Jul 12, 2016

The projection is (-15/sqrt46 , 45/sqrt46 , -90/sqrt46)(1546,4546,9046).

Explanation:

Given two vectors vecVV and vecWW, the projection of vecVV onto vecWW is given by:

(vecV * vecW)vecW/||vecW||(VW)WW

The inner product gives the component of VecVVecV in the direction of VecWVecW, and the fraction performs the same function as multiplying this magnitude by a unit vector in the direction of vecWW.

So plugging in given values:
vecV = (3,4,-1)V=(3,4,1)
vecW = (-1,3,-6)W=(1,3,6)
||vecW|| = sqrt(1 + 9 + 36) = sqrt(46)W=1+9+36=46

vecV*vecW = (3*-1) + (4*3) + (-1*-6)VW=(31)+(43)+(16)
= -3 + 12 + 6 = 15=3+12+6=15

So plugging everything in, the projection is:
(15*(-1,3,-6))/sqrt(46) = (-15/sqrt46 , 45/sqrt46 , -90/sqrt46)15(1,3,6)46=(1546,4546,9046)