How do you find the inverse of #A=##((2, 0, 0, 0), (1, 2, 0, 0), (0, 1, 2, 0), (0, 0, 1, 2))#?
2 Answers
Explanation:
Create an augmented matrix by adding
#((2,0,0,0,1,0,0,0),(1,2,0,0,0,1,0,0),(0,1,2,0,0,0,1,0),(0,0,1,2,0,0,0,1))#
Then perform a sequence of row operations to make the left hand
Divide row 1 by
#((1,0,0,0,1/2,0,0,0),(1,2,0,0,0,1,0,0),(0,1,2,0,0,0,1,0),(0,0,1,2,0,0,0,1))#
Subtract row 1 from row 2 to get:
#((1,0,0,0,1/2,0,0,0),(0,2,0,0,-1/2,1,0,0),(0,1,2,0,0,0,1,0),(0,0,1,2,0,0,0,1))#
Divide row 2 by
#((1,0,0,0,1/2,0,0,0),(0,1,0,0,-1/4,1/2,0,0),(0,1,2,0,0,0,1,0),(0,0,1,2,0,0,0,1))#
Subtract row 2 from row 3 to get:
#((1,0,0,0,1/2,0,0,0),(0,1,0,0,-1/4,1/2,0,0),(0,0,2,0,1/4,-1/2,1,0),(0,0,1,2,0,0,0,1))#
Divide row 3 by
#((1,0,0,0,1/2,0,0,0),(0,1,0,0,-1/4,1/2,0,0),(0,0,1,0,1/8,-1/4,1/2,0),(0,0,1,2,0,0,0,1))#
Subtract row 3 from row 4 to get:
#((1,0,0,0,1/2,0,0,0),(0,1,0,0,-1/4,1/2,0,0),(0,0,1,0,1/8,-1/4,1/2,0),(0,0,0,2,-1/8,1/4,-1/2,1))#
Divide row 4 by
#((1,0,0,0,1/2,0,0,0),(0,1,0,0,-1/4,1/2,0,0),(0,0,1,0,1/8,-1/4,1/2,0),(0,0,0,1,-1/16,1/8,-1/4,1/2))#
We can then read off our inverse matrix from the last four columns:
#((1/2,0,0,0),(-1/4,1/2,0,0),(1/8,-1/4,1/2,0),(-1/16,1/8,-1/4,1/2))#
This method works for square matrices of any size.
Explanation:
Calling
Now the
such that
calling now
As we can verify
then
and
substituting those values onto
following with this procedure for