How do you find the 1st and 2nd derivative of #e^(x^2)#?

1 Answer
Jul 16, 2016

#f'(x)=2xe^(x^2),f''(x)=2e^(x^2)(2x^2+1)#

Explanation:

#color(orange)"Reminder"#

#d/dx(e^x)=e^x" and " d/dx(e^(g(x)))=e^(g(x)).g'(x)#

#color(blue)"First derivative"#

#f(x)=e^(x^2)rArrf'(x)=e^(x^2).2x=2xe^(x^2)#

#color(blue)"Second derivative"#

Differentiate using the #color(red)"product rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))#

Differentiating #f'(x)=2xe^(x^2)#

now #g(x)=2xrArrg'(x)=2#

and #h(x)=e^(x^2)rArrh'(x)=2xe^(x^2)#

#rArrf''(x)=2x.2xe^(x^2)+2e^(x^2)=4x^2e^(x^2)+2e^(x^2)#

#=2e^(x^2)(2x^2+1)#