How do you convert #x^2-y^2=1 # to polar form?
1 Answer
Jul 17, 2016
Explanation:
To convert from
#color(blue)"cartesian to polar" # use the following.
#color(red)(|bar(ul(color(white)(a/a)color(black)(x=rcostheta,y=rsintheta)color(white)(a/a)|)))# We will also make use of the identities.
#color(orange)"Reminder"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(cos2theta=cos^2theta-sin^2theta)color(white)(a/a)|)))# and
#color(red)(|bar(ul(color(white)(a/a)color(black)(sectheta=1/(costheta))color(white)(a/a)|)))# Using the conversion formulae above we can write.
#x^2-y^2=1rArr(rcostheta)^2-(rsintheta)^2=1#
#rArrr^2cos^2theta-r^2sin^2theta=1#
#rArrr^2(cos^2theta-sin^2theta)=1rArrr^2=1/(cos^2theta-sin^2theta)#
#rArrr^2=1/(cos2theta)=sec2theta#