How do you find the holes for #(2x^3-5x^2-9x+18) / (x^2 - x - 6)#?
1 Answer
There are holes at
Explanation:
Factoring the denominator, we find:
#x^2-x-6 = (x+2)(x-3)#
So the denominator is zero when
At any hole, both the numerator and denominator are zero. Note this condition is required but not sufficient.
Let
Then
So
#2x^3-5x^2-9x+18#
#=(x+2)(2x^2-9x+9)#
#=(x+2)(x-3)(2x-3)#
So we find:
#(2x^3-5x^2-9x+18)/(x^2-x-6) = (color(red)(cancel(color(black)((x+2))))color(red)(cancel(color(black)((x-3))))(2x-3))/(color(red)(cancel(color(black)((x+2))))color(red)(cancel(color(black)((x-3))))) = 2x-3#
excluding
The singularities at