How do you use the chain rule to differentiate #y=4(x^3+5)^(3/4)#?
1 Answer
Jul 29, 2016
Explanation:
differentiate using the
#color(blue)"chain rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)# let
#color(blue)(u=x^3+5)rArr(du)/dx=3x^2# and
#y=4color(blue)(u)^(3/4)rArr(dy)/(du)=3color(blue)(u)^(-1/4)# substitute these values into (A) and convert u to x
#rArrdy/dx=3color(blue)(u)^(-1/4).3x^2=(9x^2)/(x^3+5)^(1/4)#