How do you differentiate #y=e^x/x^7#?

1 Answer
Jul 30, 2016

#y^'=(e^x(x-7))/x^8#

Explanation:

The easiest way, for me, is to first write this not as a quotient:

#y=e^x/x^7=e^x x^-7#

From here, use the product rule, which states that if #y=f(x)g(x)#, then #y^'=f^'(x)g(x)+f(x)g^'(x)#.

So here, we see that #f(x)=e^x#, so #f^'(x)=e^x# as well, and #g(x)=x^-7#, so #g^'(x)=-7x^-8#.

Thus:

#y^'=e^x x^-7+e^x(-7x^-8)#

Simplifying:

#y^'=e^x/x^7-(7e^x)/x^8#

Common denominator:

#y^'=(xe^x-7e^x)/x^8#

#y^'=(e^x(x-7))/x^8#

Note that this can also be done with the quotient rule, which states that if #y=f(x)/g(x)# then #y^'=(f^'(x)g(x)-f(x)g^'(x))/(g(x))^2#.

So, in this case #f(x)=e^x# so again #f^'(x)=e^x#, but #g(x)=x^7# so #g^'(x)=7x^6#.

Thus:

#y^'=(e^x x^7-e^x(7x^6))/(x^7)^2=(e^x x^6(x-7))/x^14=(e^x(x-7))/x^8#