How do you solve #7sinx+5=2cos^2x# in the interval #0<=x<=2pi#?

1 Answer
Aug 7, 2016

#(7pi)/6 and (11pi)/6#

Explanation:

#7sin x + 5 = 2cos^2 x.#
Replace #cos^2 x# by #(1 - sin^2 x)#:
#7sin x + 5 = 2 - 2sin^2 x#
#2sin^2 x + 7sin x + 3 = 0#
Solve this quadratic equation for sin x.
#D = d^2 = b^2 - 4ac = 49 - 24 = 25# --> #d = +- 5#
There are 2 real roots:
#x = -b/(2a) = -7/4 +- 5/4 = (-7 +- 5)/4#
#x1 = -2/4 = -1/2#, and #x2 = -12/4 = -3# (Rejected because < -1)
Trig table, and unit circle give -->
#x = - 1/2# --> 2 arcs x
a. #x = - pi/6#, or #x = (11pi)/6 #--> (co-terminal), and
b. #x = pi + pi/6 = (7pi)/6#
Answers for #(0, 2pi)#
#(7pi)/6 and (11pi)/6#