How do you find all the zeros of #f(x)=x^3+x^2-11x-30#?
1 Answer
Use Cardano's method to find Real zero:
#x_1 = 1/3(-1+root(3)((-709+9sqrt(4265))/2)+root(3)((-709-9sqrt(4265))/2))#
and related Complex zeros.
Explanation:
#f(x) = x^3+x^2-11x-30#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 121+5324+120-24300+5940 = -12795#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3+27x^2-297x-810#
#=(3x+1)^3-102(3x+1)-709#
#=t^3-102t-709#
where
Cardano's method
We want to solve:
#t^3-102t-709=0#
Let
Then:
#u^3+v^3+3(uv-34)(u+v)-709=0#
Add the constraint
#u^3+39304/u^3-709=0#
Multiply through by
#(u^3)^2-709(u^3)+39304=0#
Use the quadratic formula to find:
#u^3=(709+-sqrt((-709)^2-4(1)(39304)))/(2*1)#
#=(-709+-sqrt(502681-157216))/2#
#=(-709+-sqrt(345465))/2#
#=(-709+-9sqrt(4265))/2#
Since this is Real and the derivation is symmetric in
#t_1=root(3)((-709+9sqrt(4265))/2)+root(3)((-709-9sqrt(4265))/2)#
and related Complex roots:
#t_2=omega root(3)((-709+9sqrt(4265))/2)+omega^2 root(3)((-709-9sqrt(4265))/2)#
#t_3=omega^2 root(3)((-709+9sqrt(4265))/2)+omega root(3)((-709-9sqrt(4265))/2)#
where
Now
#x_1 = 1/3(-1+root(3)((-709+9sqrt(4265))/2)+root(3)((-709-9sqrt(4265))/2))#
#x_2 = 1/3(-1+omega root(3)((-709+9sqrt(4265))/2)+omega^2 root(3)((-709-9sqrt(4265))/2))#
#x_3 = 1/3(-1+omega^2 root(3)((-709+9sqrt(4265))/2)+omega root(3)((-709-9sqrt(4265))/2))#