How do you find the value of #cos((17pi)/12)#?

1 Answer
Aug 17, 2016

# - sqrt(2 - sqrt3)/2#

Explanation:

Trig unit circle -->
#cos ((17pi)/12) = cos ((5pi)/12 + pi) = - cos ((5pi)/12)# (1)
Find #cos ((5pi)/12# by using the trig identity:
#2cos^2 t = 1 + cos 2t#
Call #cos ((5pi)/12) = cos t#
Trig table -->
#2cos^2 t = 1 + cos ((10pi)/12) = 1 + cos ((5pi)/6) = 1 - sqrt3/2#
#cos ^2 t = (2 - sqrt3)/4#
#cos t = cos ((5pi)/12) = sqrt(2 - sqrt3)/2#
Take the positive answer because #cos ((5pi)/12)# is positive.
Back to (1)
#cos ((17pi)/12) = - cos t = - sqrt(2 - sqrt3)/2#