How do you solve #-6(-2x+2)+4(3+4x)=28# using the distributive property?

1 Answer
Aug 22, 2016

x = 1

Explanation:

The #color(blue)"distributive property"# means multiply each of the terms inside the bracket by the number outside the bracket.

In general terms this can be shown as.

#color(red)(|bar(ul(color(white)(a/a)color(black)(a(b+c)=ab+ac)color(white)(a/a)|)))#

#rArr(-6xx-2x)+(-6xx2)+(4xx3)+(4xx4x)=28#

#rArr12x-cancel(12)+cancel(12)+16x=28#

#rArr28x=28#

#(cancel(28)^1 x)/cancel(28)^1=cancel(28)^1/cancel(28)^1rArrx=1#