What is the Cartesian form of #(-64,(5pi)/12)#?
1 Answer
I got
Since you have two coordinates,
(If you had three coordinates, you would have to specify spherical or cylindrical coordinates.)
In polar coordinates, recall that
#x = rcostheta# ,#y = rsintheta# .
Therefore, you input the values of
#color(blue)("("x)# #color(blue)(,)# #color(blue)(y")")#
#= (rcostheta,rsintheta)#
#= (-64cos((5pi)/12),-64sin((5pi)/12))#
#= (-64cos(75^@),-64sin(75^@))#
Now we can use the additive angle formulas
#sin(u+v) = sinusinv + cosucosv# ,
#cos(u+v) = cosucosv - sinusinv# ,
to get
#= (-64cos(30^@+45^@),-64sin(30^@+45^@))#
#= (-64(cos30^@cos45^@ - sin30^@sin45^@),-64(sin30^@cos45^@ + cos30^@sin45^@))#
#= (-64(sqrt3/2*sqrt2/2 - 1/2*sqrt2/2),-64(1/2*sqrt2/2 + sqrt3/2*sqrt2/2))#
#= (-64(sqrt6/4 - sqrt2/4),-64(sqrt2/4 + sqrt6/4))#
#= (-64((sqrt6-sqrt2)/4),-64((sqrt6+sqrt2)/4))#
#= (-16(sqrt6-sqrt2),-16(sqrt6+sqrt2))#
#= color(blue)((-16sqrt6 + 16sqrt2","-16sqrt6 - 16sqrt2))# .