How do you solve #-6(n-5)=66# using the distributive property?

1 Answer
Aug 24, 2016

n = - 6

Explanation:

The #color(blue)"distributive property"# means multiply the terms inside the bracket by the number outside the bracket.

In general, this is #color(red)(|bar(ul(color(white)(a/a)color(black)(a(b+c)=ab+ac)color(white)(a/a)|)))#

So: #-6(n-5)=66rArr(-6xxn)+(-6xx-5)=66#

#rArr-6n+30=66#

subtract 30 from both sides of the equation.

#rArr-6n+cancel(30)-cancel(30)=66-30rArr-6n=36#

now divide both sides by -6 to obtain n

#(cancel(-6)^1 n)/cancel(-6)^1=cancel(36)^-6/cancel(-6)^1rArrn=-6#