How do you differentiate #f(x)=e^(x^2-3x-4) # using the chain rule?
1 Answer
Aug 29, 2016
Explanation:
Differentiate using the
#color(blue)"chain rule"#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))....(A)# let
#u=x^2-3x-4rArr(du)/(dx)=2x-3# then
#f(x)=y=e^urArr(dy)/(du)=e^u# Substitute these values into (A) and change u back into terms of x.
#rArrdy/dx=e^u(2x-3)=(2x-3)e^(x^2-3x-4)#