How do you determine if #g(x)= -9x^3 - 8# is an even or odd function?

1 Answer
Sep 1, 2016

#g(x)=-9x^3-8# is neither odd nor even.

Explanation:

If a function #g(x)# is even than #g(-x)=g(x)#

and if it is odd than #g(-x)=-g(x)#.

As #g(x)=-9x^3-8#,

#g(-x)=-9(-x)^3-8#

= #-9×(-x^3)-8#

= #9x^3-8# and hence

#g(-x)# is neither equal to #xgx)# nor equal to #-g(x)#.

Hence, #g(x)# is neither odd nor even.