How do you rationalize the numerator for #sqrt((1+siny)/(1-siny))#?

1 Answer
Sep 3, 2016

The expression can be simplified to #(1 + siny)/cosy#.

Explanation:

#sqrt(1 + siny)/sqrt(1 - siny)#

Multiply by the entire expression by the numerator to cancel the square root:

#=sqrt(1 + siny)/sqrt(1 - siny) xx sqrt(1 + siny)/sqrt(1 + siny)#

#=(1 + siny)/sqrt(1 - sin^2y)#

This can be simplified further. Apply the pythagorean identity #1 - sin^2theta = cos^2theta#.

#=(1 + siny)/(sqrt(cos^2y)#

#=(1 + siny)/(sqrt(cosy xx cosy))#

#=(1 + siny)/cosy#

Hopefully this helps!