How do you differentiate #y=ln(1+x^2)#?
1 Answer
Sep 4, 2016
Explanation:
differentiate using the
#color(blue)"chain rule"# That is
#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(lnx)=1/x)color(white)(a/a)|)))# let
#u=1+x^2rArr(du)/(dx)=2x# and so
#y=lnurArr(dy)/(du)=1/u# substitute these values into (A) changing u back to terms of x.
#rArrdy/dx=1/u(2x)=(2x)/(1+x^2)#