How do you find the x and y intercepts of #5y=7.5-2.5x#?

2 Answers
Sep 9, 2016

#y_("intercept")=3/2#

#x_("intercept")=3#

Explanation:

Lets get rid of the decimals. Multiply both sides by 2

#2(5y)=2(7.5-2.5x)#

#10y=15-5x#

Divide both sides by 10

#y=15/10-5/10x#

#y=3/2-1/2x#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
y intercept is at #x=0# so by substitution

#y_("intercept")" "=" "3/2-1/2(0)" "=" "3/2#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
x intercept is at #y=0# so by substitution

#0=3/2-1/2(x_("intercept"))#

#=> +1/2(x_("intercept"))=3/2#

#x_("intercept")=3#

Sep 9, 2016

x intercept is 3
y intercept is 1.5

Explanation:

To find x intercept we should substitute #y# by zero
To find y intercept we should substitute #x# by zero

x intercept for the given equation:
#5(0)=7.5-2.5x#
#rArr 0= 7.5-2.5x#
#rArr 0=7.5-2.5x#
#rArr-7.5=-2.5x#
#rArrx=(-7.5)/-2.5#
#rArrx=3#

y intercept of the given equation:
#5y=7.5-2.5(0)#
#rArr5y=7.5-0#
#rArr5y=7.5#
#rArry=7.5/5#
#rArry=1.5#

Therefore, x intercept is 3 and y intercept is 1.5