How do you convert the rectangular point #(-3,3sqrt3)# into polar form?
1 Answer
Sep 10, 2016
Explanation:
To convert from
#color(blue)"rectangular to polar form"# That is
#(x,y)to(r,theta)#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(r=sqrt(x^2+y^2))color(white)(a/a)|)))# and
#color(red)(bar(ul(|color(white)(a/a)color(black)(theta=tan^-1(y/x))color(white)(a/a)|)))# here x = - 3 and
#y=3sqrt3#
#rArrr=sqrt((-3)^2+(3sqrt3)^2)=sqrt(9+27)=sqrt36=6# Now,
# (-3,3sqrt3)# is in the 4th quadrant so we must ensure that#theta# is in the 4th quadrant.
#theta=tan^-1((3sqrt3)/(-3))=tan^-1(-sqrt3)#
#=-pi/3larr" in 4th quadrant"# Thus
#(-3,3sqrt3)to(6,-pi/3)to(6,-60^@)#