How do you integrate #int sec^2x/(4-tan^2x)^(3/2)# by trigonometric substitution?

1 Answer
Sep 11, 2016

#tanx/(4sqrt(4-tan^2x))+C#

Explanation:

We have:

#I=intsec^2x/(4-tan^2x)^(3/2)dx#

We will first use the non-trigonometric substitution #u=tanx#, implying that #du=sec^2xdx#:

#I=int(du)/(4-u^2)^(3/2)#

Now we will apply the trigonometric substitution #u=2sintheta#. Recall that this implies that #du=2costhetad theta#.

#I=int(2costhetad theta)/(4-4sin^2theta)^(3/2)#

#=int(2costhetad theta)/(4^(3/2)(1-sin^2theta)^(3/2))#

Note that #1-sin^2theta=cos^2theta#:

#I=int(2costhetad theta)/(8(cos^2theta)^(3/2))#

#=int(costhetad theta)/(4cos^3theta)#

#=1/4int(d theta)/cos^2theta#

#=1/4intsec^2thetad theta#

#=1/4tantheta+C#

Recall that #u=2sintheta#, so #theta=arcsin(u/2)#.

#I=1/4tan(arcsin(u/2))+C#

We can simplify this: draw the triangle where sine is #u/2#, that is, the opposite side is #u# and the hypotenuse is #2#. Through the Pythagorean theorem, we see that the adjacent side is #sqrt(4-u^2)#.

Thus, the tangent is opposite over adjacent, or:

#I=1/4(u/sqrt(4-u^2))+C#

Now, since #u=tanx#:

#I=tanx/(4sqrt(4-tan^2x))+C#