How do you solve #tan^2x=1-secx# for #0<=x<=2pi#?

1 Answer
Sep 12, 2016

#0, (2pi)/3, (4pi)/3, 2pi#

Explanation:

#tan^2 x + sec x - 1 = 0#
#sin^2 x/(cos^2 x) + 1/(cos x) - 1 = 0#
#(sin^2 x + cos x - cos^2 x)/(cos^2 x)# = 0
#sin^2 x - cos^2 x + cos x = 0#. (condition: cos x different to 0)
Replace #sin^2 x# by #(1 - cos^2 x)#, we get
#(1 - cos^2 x) - cos^2 x + cos x = 0#
#- 2cos^2 x + cos x + 1 = 0#
Solve this quadratic equation for cos x.
Since a + b + c = 0, use shortcut. The 2 real roots are:
cos x = 1 and #cos x = c/a = - 1/2#
a. When cos x = 1 --> x = 0 and #x = 2pi#
b. When #cos x = - 1/2# --> #x = +- (2pi)/3#
arc #(4pi)/3# is co-terminal to arc #(-2pi)/3#.
Answers for #(0, 2pi)#
#0, (2pi)/3, (4pi)/3, 2pi#