How do you integrate #int 1/sqrt(x^2-a^2)# by trigonometric substitution?
1 Answer
Explanation:
#intdx/sqrt(x^2-a^2)#
We will use the substitution
#=int(asecthetatanthetad theta)/sqrt(a^2sec^2theta-a^2)=int(asecthetatanthetad theta)/(asqrt(sec^2theta-1))#
Note that
#=int(secthetatanthetad theta)/tantheta=intsecthetad theta=lnabs(sectheta+tantheta)+C#
From
So,
#=lnabs(x/a+sqrt(x^2-a^2)/a)+C#
Note that a
#=lnabs(x+sqrt(x^2-a^2))+C#