How do you use the angle sum or difference identity to find the exact value of #cos((-11pi)/12)#?

1 Answer
Sep 15, 2016

#- sqrt(2 + sqrt3)/2#

Explanation:

#cos ((-11pi)/12) = cos (pi/12 - (12pi)/12) = #
#= cos (pi/12 - pi) = - cos (pi/12)#
Find #cos (pi/12)# by using trig identity:
#2cos^2 a = 1 + cos 2a#
Trig table of special arcs -->
#2cos^2 (pi/12) = 1 + cos (pi/6) = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 (pi/12) = (2 + sqrt3)/4#
#cos (pi/12) = +- sqrt(2 + sqrt3)/2#
Since #cos (pi/12)# is positive (Quadrant I), take the positive result.
Finally,
#cos ((-11pi)/12) = - cos (pi/12) = - sqrt(2 + sqrt3)/2#