How do you integrate #(x^2)(e^x)dx#?

1 Answer
Sep 17, 2016

#intx^2e^xdx=e^x(x^2-2x+2)+c#

Explanation:

We do it using integration by parts.

Let #u=x^2# and #v=e^x#, then #du=2xdx# and #dv=e^xdx#

Now integration by parts states that

#intu(x)v'(x)dx=u(x)v(x)-intv(x)u'(x)dx#

Hence #intx^2e^xdx=x^2e^x-inte^x xx 2xdx#

= #x^2e^x-2intxe^xdx+c# ...............(1)

Now we set #u=x#, then #du=dx#

and #intxe^xdx=xe^x-inte^x xx1xxdx# or

#intxe^xdx=xe^x-inte^xdx=xe^x-e^x#

Putting this in (1), we get

#intx^2e^xdx=x^2e^x-2(xe^x-e^x)+c#

= #e^x(x^2-2x+2)+c#