How do you prove #cottheta+tantheta= cscthetasectheta#?

1 Answer
Sep 18, 2016

Please see below.

Explanation:

#cottheta+tantheta#

#costheta/sintheta+sintheta/costheta#

#(costhetaxxcostheta+sinthetaxxsintheta)/(sinthetacostheta)#

= #(cos^2theta+sin^2theta)/(sinthetacostheta)#

= #1/(sinthetacostheta)#

= #1/sinthetaxx1/costheta#

= #cscthetasectheta#