How do you differentiate #sqrt(2x) - x^3 #?
1 Answer
Sep 21, 2016
Explanation:
Differentiate using the
#color(blue)"power rule"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(d/dx(ax^n)=nax^(n-1))color(white)(a/a)|)))# Note that
#sqrt(2x)=sqrt2xxsqrtx=sqrt2 x^(1/2)#
#rArrd/dx(sqrt2x^(1/2)-x^3)=1/2.sqrt2x^(-1/2)-3x^2#
#=sqrt2/(2sqrtx)-3x^2#