How do you solve #Ln (x-1) + ln (x+2) = 1 #? Precalculus Properties of Logarithmic Functions Natural Logs 1 Answer Shwetank Mauria Sep 22, 2016 #x=1.729# Explanation: #ln(x-1)+ln(x+2)=1# #hArrln(x-1)(x-2)=1# or #(x-1)(x+2)=e# or #x^2+x-2-e=0# and using quadratic fomula #(-b+-sqrt(b^2-4ac))/(2a)# #x=(-1+-sqrt(1^2-4xx1xx(-2-e)))/2# = #(-1+-sqrt(1+8+4e))/2# = #(-1+-sqrt(9+4e))/2# = #(-1+-sqrt(9+4xx2.7183))/2# = #(-1+-sqrt(9+10.8732))/2# = #(-1+-sqrt(19.8732))/2# = #(-1+-4.4579)/2# i.e. #x=1.729# or #x=-2.729# But #x# cannot have a negative value, hence #x=-2.729# Answer link Related questions What is the natural log of e? What is the natural log of 2? How do I do natural logs on a TI-83? How do I find the natural log of a fraction? What is the natural log of 1? What is the natural log of infinity? Can I find the natural log of a negative number? How do I find a natural log without a calculator? How do I find the natural log of a given number by using a calculator? How do I do natural logs on a TI-84? See all questions in Natural Logs Impact of this question 1119 views around the world You can reuse this answer Creative Commons License