How do you find the second derivative of # ln(x^2+5x)# ?
3 Answers
Explanation:
First, we need to know the derivative of
#d/dxln(x)=1/x#
So, since we have a function embedded within
#d/dxln(f(x))=1/f(x)*f'(x)#
Thus:
#d/dxln(x^2+5x)=1/(x^2+5x)*d/dx(x^2+5x)#
#=(2x+5)/(x^2+5x)#
Now, to differentiate this again, use the quotient rule:
#d/dxf(x)/(g(x))=(f'(x)g(x)-f(x)g'(x))/(g(x))^2#
Thus:
#d^2/dx^2ln(x^2+5x)=((x^2+5x)d/dx(2x+5)-(2x+5)d/dx(x^2+5x))/(x^2+5x)^2#
#=((x^2+5x)(2)-(2x+5)(2x+5))/(x^2+5x)^2#
#=(2x^2+10x-(4x^2+20x+25))/(x^2+5x)^2#
#=(-2x^2-10x-25)/(x^2+5x)^2#
Explanation:
First derivative:
Second derivftive:
Explanation:
To find the first derivative use the
#color(blue)"chain rule"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))..... (A)# let
#u=x^2+5xrArr(du)/(dx)=2x+5# then
#y=lnurArr(dy)/(du)=1/u# substitute these values into (A) changing u back to x.
#rArrdy/dx=1/uxx(2x+5)=(2x+5)/(x^2+5x)#
#color(blue)"-----------------------------------------------------"# To find the second derivative use the
#color(blue)"quotient rule"# If
#f(x)=(g(x))/(h(x))" then"#
#color(red)(bar(ul(|color(white)(a/a)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(a/a)|)))# here
#g(x)=2x+5rArrg'(x)=2# and
#h(x)=x^2+5xrArrh'(x)=2x+5#
#f'(x)=((x^2+5x).2-(2x+5)(2x+5))/(x^2+5x)^2# simplifying the numerator.
#=(2x^2+10x-4x^2-20x-25)/(x^2+5x)^2# The second derivative is therefore.
#=(-2x^2-10x-25)/(x^2+5x)^2=(-(2x^2+10x+25))/(x^2+5x)^2#