How do you evaluate the integral #int sinx/(root5(cosx))dx# from 0 to #pi#?
2 Answers
Sep 27, 2016
Explanation:
Let
We take,
Also,
#:. I =-int_1^-1 1/(root(5)t)dt=int_-1^1t^(-1/5)dt# ,
#=[t^(-1/5+1)/(-1/5+1)]_-1^1# ,
#=5/4[t^(4/5)]_-1^1#
#=5/4[cancel(1^(4/5))^(1) - (-1)^(4/5)]# ,
#= 5/4(1 - ((-1)^(1/2))^(8/5))#
#= 5/4 - 5/4i^(8/5)#
#~~ color(blue)(2.261 - 0.735i)#
Sep 27, 2016
Explanation:
The integral
Note: We consider