How do you verify the identify #tantheta+cottheta=secthetacsctheta#?
1 Answer
see explanation.
Explanation:
We attempt to show by manipulation that the left side has the same form as the right side.
Using the
#color(blue)"trigonometric identities"#
#color(orange)"Reminder"#
#color(red)(bar(ul(|color(white)(a/a)color(black)(tantheta=(sintheta)/(costheta)" and " cottheta=(costheta)/(sintheta))color(white)(a/a)|)))# left side
#=tantheta+cottheta#
#=(sintheta)/(costheta)+(costheta)/sintheta# To combine these fractions we require a common denominator of
#costhetasintheta.#
#rArr(sintheta)/(costheta)xx(sintheta)/(sintheta)+(costheta)/(sintheta)xx(costheta)/(costheta)#
#=(sin^2theta+cos^2theta)/(costhetasintheta)#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2theta+cos^2theta=1)color(white)(a/a)|)))#
#color(red)(bar(ul(|color(white)(a/a)color(black)(sectheta=1/(costheta)" and " csctheta=1/(sintheta))color(white)(a/a)|)))#
#rArr(sin^2theta+cos^2theta)/(costhetasintheta)=1/(costheta)xx1/(sintheta)#
#=secthetacsctheta=" right side"rArr" verified"#