#log_3(x- 6) - log_9(2x) = 0#
#log(x - 6)/log3 - log(2x)/log9 = 0#
#log(x- 6)/log3 - log(2x)/(2log3) = 0#
Put on a common denominator:
#(2log(x - 6))/(2log3) - log(2x)/(2log3) = 0#
#log_9(x - 6)^2- log_9(2x) = 0#
#log_9((x^2 - 12x + 36)/(2x)) = 0#
#(x^2 - 12x + 36)/(2x) = 9^0#
#(x^2 - 12x + 36)/(2x) = 1#
#x^2 - 12x + 36 = 2x#
#x^2 - 14x + 36 = 0#
#1(x^2 - 14x + 49 - 49) = -36#
#1(x - 7)^2 - 49 = -36#
#1(x - 7)^2 = 13#
#(x - 7) = +-sqrt(13)#
#x = 7 +- sqrt(13)#
However, the #x = 7 - sqrt(13)# is extraneous, because it renders the initial equation undefined.
Hopefully this helps!