Point A is at #(-2 ,8 )# and point B is at #(-1 ,3 )#. Point A is rotated #(3pi)/2 # clockwise about the origin. What are the new coordinates of point A and by how much has the distance between points A and B changed?

1 Answer
Sep 30, 2016

The change in distance is:

#Deltad = d_2 - d_1#

#Deltad = sqrt82 - sqrt26#

Explanation:

The first distance from B to A is:

#d_1 = sqrt((-2 - -1)^2 + (8 - 3)^2)#

#d_1 = sqrt((-1)^2 + (5)^2)#

#d_1 = sqrt(1 + 25)#

#d_1 = sqrt26#

Compute the polar coordinates of point A:

#r = sqrt((-2)^2 + (8)^2)#

#r = sqrt(4 + 64)#

#r = sqrt68#

#theta_1 = tan^-1(8/-2) + pi#

Note: We add #pi#, because the inverse tangent function returns either first quadrant angles or negative rotations. In this case, it will return a negative angle.

To rotate the point we add #(3pi)/2# to the original angle:

#theta_2 = tan^-1(8/-2) + (5pi)/2#

Compute the x and y coordinates for new point A:

#(sqrt68cos(tan^-1(8/-2) + (5pi)/2), sqrt68sin(tan^-1(8/-2) + (5pi)/2))#

#(8, 2)#

Compute the new distance:

#d_2 = sqrt((8 - -1)^2 + (2 - 3)^2)#

#d_2 = sqrt((9)^2 + (-1)^2)#

#d_2 = sqrt82#

The change in distance is:

#Deltad = d_2 - d_1#

#Deltad = sqrt82 - sqrt26#