How do you find the exact value of #cos45# using the sum and difference, double angle or half angle formulas?
1 Answer
Sep 30, 2016
Explanation:
The double angle formula for
#cos 2theta = cos^2 theta - sin^2 theta = 2cos^2 theta - 1#
Given:
#cos 90^@ = 0#
Let
#0 = cos 90^@ = 2cos^2 45^@-1#
Add
#1 = 2cos^2 45^@#
Divide both sides by
#cos^2 45^@ = 1/2#
Hence:
#cos 45^@ = +-sqrt(1/2) = +-sqrt(2/4) = +-sqrt(2)/2#
Now
So:
#cos 45^@ = sqrt(2)/2#
Note
I prefer to find
Then:
#cos 45^@ = "adjacent"/"hypotenuse" = 1/sqrt(2) = sqrt(2)/2#