How do you write a polynomial function of least degree given the zeros -5, sqrt3√3? Precalculus Complex Zeros Complex Conjugate Zeros 1 Answer Tazwar Sikder Oct 5, 2016 f(x) = x^(2) - (sqrt(3) - 5) x - 5 sqrt(3)f(x)=x2−(√3−5)x−5√3 Explanation: Let's express the function as f(x) = (x + 5) (x - sqrt(3))f(x)=(x+5)(x−√3): => f(x) = (x + 5) (x - sqrt(3))⇒f(x)=(x+5)(x−√3) => f(x) = (x) (x) + (x) (- sqrt(3)) + (5) (x) + (5) (- sqrt(3))⇒f(x)=(x)(x)+(x)(−√3)+(5)(x)+(5)(−√3) => f(x) = x^(2) - sqrt(3) x + 5 x - 5 sqrt(3)⇒f(x)=x2−√3x+5x−5√3 => f(x) = x^(2) - (sqrt(3) - 5) x - 5 sqrt(3)⇒f(x)=x2−(√3−5)x−5√3 Answer link Related questions What is a complex conjugate? How do I find a complex conjugate? What is the conjugate zeros theorem? How do I use the conjugate zeros theorem? What is the conjugate pair theorem? How do I find the complex conjugate of 10+6i10+6i? How do I find the complex conjugate of 14+12i14+12i? What is the complex conjugate for the number 7-3i7−3i? What is the complex conjugate of 3i+43i+4? What is the complex conjugate of a-bia−bi? See all questions in Complex Conjugate Zeros Impact of this question 1317 views around the world You can reuse this answer Creative Commons License