How do you prove the identity #(tany+siny)/(2tantheta)=cos^2(y/2)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Oct 6, 2016 see below Explanation: #(tan y+siny)/(2tany) = cos^2 (1/2 y) # Left Side: #=(tan y+siny)/(2tany) # #=(siny/cosy+siny)/(2siny/cosy) # #=((siny+sinycosy)/cosy)/(2siny/cosy)# #=(siny+sinycosy)/cosy * cosy/(2siny)# #=(siny+sinycosy)/(2siny)# #=(siny(1+cosy))/(2siny)# #=1/2 (1+cos y)# #=(sqrt(1/2 (1+cos y)))^2 # #=(cos (1/2 y))^2# #=cos^2(1/2 y)# #=# Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1913 views around the world You can reuse this answer Creative Commons License