How do you verify the identity #-2cos^2theta=sin^4theta-cos^4theta-1#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Oct 7, 2016 see below bolded text Explanation: #-2cos ^2 theta=sin^4 theta-cos^4theta-1# Right Side : #=sin^4 theta-cos^4theta-1# #=(sin^2theta-cos^2theta)(sin^2theta+cos^2theta)-1# #=(sin^2theta-cos^2theta) *1 - 1# #=sin^2theta-cos^2theta-1# #=1-cos^2theta-cos^2theta-1# #=cancel1-2cos^2theta-cancel 1# #=-2cos^2theta# #:.=# Left Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 2020 views around the world You can reuse this answer Creative Commons License