How do you verify the identity #sec^2thetasin^2theta=sec^4theta-(tan^4theta+sec^2theta)#?

1 Answer
Oct 7, 2016

see below

Explanation:

#sec^2 theta sin^2 theta= sec^4 theta-(tan^4 theta + sec^2 theta)#

Right Side :#=sec^4 theta-(tan^2 thetatan^2theta+sec^2theta)#

#=sec^4 theta-((sec^2-1)(sec^2theta-1) + sec^2theta)#

#=sec^4 theta-(sec^4theta-2sec^2theta+1+sec^2theta)#

#=sec^4 theta-(sec^4theta-sec^2theta+1)#

#=sec^4 theta-sec^4theta+sec^2theta-1#

#=sec^2 theta-1#

#=tan^2 theta#

#=sin^2 theta/cos^2 theta#

#=1/cos^2 theta sin^2theta#

#=sec^2 theta sin^2 theta#

#:.=# Left Side