How do you integrate #int sqrt(arcsinx/(1-x^2)# using substitution?

2 Answers
Oct 9, 2016

Not only does this integral needs a standard Trig substitution, but also an inverse trig identity not commonly used.

Explanation:

#int(sqrt((sin^-1)/(1-x^2))) dx#

# x=cosu rArrdx=-sinudu#
#cos^1x=u#

#sin^-1 +cos^-1=pi/2#

#sin^-1x=(pi/2)-cos^-1u#
#sin^-1x=pi/2 -u#

substituting into the integral

#int(sqrt((pi/2-u)/(1-cos^2u)))xx(-sinudu)#

#-int((pi/2-u)^(1/2)/sqrt(sin^2u))sinudu#

#-int((pi/2-u)^(1/2)/(sinu))sinudu#

#sinu# is cancelled from numerator and denominator

#-int(pi/2-u)^(1/2)du#

integrating by inspection

#=2/3(pi/2-u)^(3/2)+C#

substitute back for #u#

#=2/3(pi/2-cos^-1x)^(3/2)+C#

#=2/3(sin^-1x)^(3/2)+C#

Oct 9, 2016

#2/3(arcsinx)^(3/2)+C#

Explanation:

#intsqrt(arcsinx/(1-x^2))dx#

Note that the square root can be split up:

#=intsqrtarcsinx/sqrt(1-x^2)dx#

Furthermore, note that we have an #arcsin# function and its derivative present:

#=int(arcsinx)^(1/2)(1/sqrt(1-x^2))dx#

Using substitution, where #u=arcsinx# and #du=1/sqrt(1-x^2)dx#:

#=intu^(1/2)du#

Using the typical power rule for integration:

#=u^(3/2)/(3/2)+C=2/3u^(3/2)+C=2/3(arcsinx)^(3/2)+C#