How do you implicitly differentiate #11=(x)/(ye^x)#?

1 Answer
Oct 12, 2016

# dy/dx=(1 -11ye^x)/(11e^x) #

Explanation:

# 11=x/(ye^x) #
can be rearranged as;
# 11ye^x=x #

We can now differentiate wrt x;

# d/dx{(11y)(e^x)} = d/dx(x) #

We can use the product rule to differentiate the LHS and we know already know how to differentiate the RHS:

So, # d/dx(11ye^x)=d/dx(x) #
# :. (11y)(d/dxe^x)+(d/dx11y)(e^x)=d/dx(x) #
# :. (11y)e^x+(d/dx11y)(e^x)=1 #

We can then use the chain rule as # (dA)/dx = (dA)/dy.dy/dx #; so
# 11ye^x+(d/dy11y)dy/dx(e^x)=1 #
# 11ye^x+11dy/dxe^x=1 #
# 11e^xdy/dx=1 -11ye^x #
Hence, # dy/dx=(1 -11ye^x)/(11e^x) #