How do you prove #(tan3t-tant)/(1+tan3t*tant)=(2tant)/(1-tan^2t)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Oct 16, 2016 #LHS=(tan3t-tant)/(1+tan3t*tant)# #=((sin3t)/(cos3t)-(sint)/(cost))/(1+(sin3t)/(cos3t)*(sint)/(cost))# #=(sin3tcost-cos3tsint )/(cos3tcost+sin3tsint)# #=(sin2t)/(cos2t)# #=tan2t# #=(2tant)/(1-tan^2t)=RHS# Proved Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 2273 views around the world You can reuse this answer Creative Commons License