Solve 3tan^2 x-1=0 for all solutions [0, 2pi]?

1 Answer
Oct 17, 2016

#x in {pi/6, (5pi)/6, (7pi)/6, (11pi)/6}#

Explanation:

#3tan^2(x) - 1 = 0#

#=> tan^2(x) = 1/3#

#=> tan(x) = +-1/sqrt(3)#

If we check the unit circle, we find that #|tan(x)| = 1/sqrt(3)# when #|sin(x)| = 1/2# and #|cos(x)| = sqrt(3)/2#, that is, at #x = pi/6+npi# or #x=-pi/6+npi#.

Finding what values for #n# put these within the interval #[0, 2pi)#, we get #n in {0, 1}# for #x=pi/6+npi# and #n in {1, 2}# for #x = -pi/6+npi#. Thus, our total solution set is

#x in {pi/6, (5pi)/6, (7pi)/6, (11pi)/6}#