What is the Cartesian form of #( 6 , ( 9pi)/4 ) #?

1 Answer
Oct 18, 2016

#(3sqrt2,3sqrt2)#

Explanation:

To convert from #color(blue)"polar to cartesian form"#

That is #(r,theta)to(x,y)#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(x=rcostheta , y=rsintheta)color(white)(2/2)|)))#

here r = 6 and #theta=(9pi)/4#

#rArrx=6cos((9pi)/4)=6cos((9pi)/4-2pi)#

#=6cos(pi/4)=6xx1/sqrt2=(6sqrt2)/2=3sqrt2#

and #y=6sin((9pi)/4)=6sin((9pi)/4-2pi)#

#=6sin(pi/4)=6xx1/sqrt2=3sqrt2#

#rArr(6,(9pi)/4)to(3sqrt2,3sqrt2)#