How do you solve #2x^2+6x+33=0#?
1 Answer
Oct 23, 2016
Explanation:
#2x^2+6x+33 = 0#
This is in the form:
#ax^2+bx+c = 0#
with
The discriminant
#Delta = b^2-4ac = color(blue)(6)^2-4(color(blue)(2))(color(blue)(33)) = 36 - 264 = -228 = -2^2*57#
Since
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-b+-sqrt(Delta))/(2a)#
#color(white)(x) = (-6+-sqrt(-2^2*57))/(2*2)#
#color(white)(x) = (-6+-2sqrt(57)i)/4#
#color(white)(x) = -3/2+-sqrt(57)/2i#