How do I find the inverse of #f(x)=(x+3)/(x-2)#?

1 Answer
Oct 23, 2016

Please see the explanation. #f^-1(x) = 5/(x - 1) + 2#

Explanation:

let #x = f^-1(x)# and then substitute everywhere there is an x:

#f(f^-1(x)) = (f^-1(x) + 3)/(f^-1(x) - 2)#

Let left side becomes x by definition:

#x = (f^-1(x) + 3)/(f^-1(x) - 2)#

Add zero to the numerator in the form -2 + 2:

#x = (f^-1(x) -2 + 2 + 3)/(f^-1(x) - 2)#

Regroup:

#x = ((f^-1(x) -2) + (2 + 3))/(f^-1(x) - 2)#

Break into two fractions:

#x = (f^-1(x) -2)/(f^-1(x) - 2) + (2 + 3)/(f^-1(x) - 2)#

Substitute 1 for #(f^-1(x) -2)/(f^-1(x) - 2)# and 5 for #3 + 2#

#x = 1 + 5/(f^-1(x) - 2)#

Subtract 1 from both sides:

#x - 1 = 5/(f^-1(x) - 2)#

Multiply both sides by #(f^-1(x) - 2)/(x - 1)#

#f^-1(x) - 2 = 5/(x - 1)#

Add 2 to both sides:

#f^-1(x) = 5/(x - 1) + 2#

To prove that it is an inverse, one must show that #f(f^-1(x)) = x and f^-1(f(x)) = x#.

#f(f^-1(x)) = ((5/(x - 1) + 2) + 3)/((5/(x - 1) + 2) - 2)#

#f(f^-1(x)) = (5/(x - 1) + 5)/(5/(x - 1)#

#f(f^-1(x)) = ((5/(x - 1) + 5)/(5/(x - 1)))((x - 1)/(x - 1))#

#f(f^-1(x)) = (5+ (x - 1)5)/5#

#f(f^-1(x)) = (5+ 5x - 5)/(5#

#f(f^-1(x)) = (5x)/5#

#f(f^-1(x)) = x#

Half of the proof is done.

Now for #f^-1(f(x))#:

#f^-1(f(x)) = 5/((x + 3)/(x - 2) - 1) + 2#

#f^-1(f(x)) = 5/((x + 3)/(x - 2) - 1)(x - 2)/(x - 2) + 2#

#f^-1(f(x)) = (5(x - 2))/(x + 3 - (x - 2)) + 2#

#f^-1(f(x)) = (5(x - 2))/5 + 2#

#f^-1(f(x)) = x - 2 + 2#

#f^-1(f(x)) = x#

Q.E.D.