Question #fbdf4

1 Answer
Oct 24, 2016

#d/dx5ln(5x) = 5/x#

Explanation:

Depends on what tools you have available.

Using the chain rule, along with the known derivative #d/dxlnx = 1/x#:

#d/dx5ln(5x) = 5d/dxln(5x)#

#=5(1/(5x))(d/dx5x)#

#=5(1/(5x))(5)#

#=5/x#


Using implicit differentiation:

Let #y = 5ln(5x)#

#=> e^y = e^(5ln(5x)) = e^(ln((5x)^5))=(5x)^5=5^5x^5#

#=> d/dxe^y = d/dx5^5x^5#

#=> e^ydy/dx = 5^6x^4#

#=> dy/dx = (5^6x^4)/e^y#

#=(5^6x^4)/(5^5x^5)#

#=5/x#


Using the definition of a derivative:

#lim_(h->0)(5ln(5(x+h))-5ln(5x))/h#

#=5lim_(h->0)(ln(5(x+h))-ln(5x))/h#

#=5lim_(h->0)ln((5(x+h))/(5x))/h#

#=5lim_(h->0)1/hln(1+h/x)#

#=5lim_(h->0)ln[(1+h/x)^(1/h)]#

#=5lim_(h->0)ln[(1+(1/x)/(1/h))^(1/h)]#

Substitute #u = 1/h#. Then #u->oo# as #h->0#. Recall #lim_(n->oo)(1+x/n)^n = e^x#.

#=5lim_(u->oo)ln[(1+(1/x)/u)^u]#

#=5ln(e^(1/x))#

#=5/xln(e)#

#=5/x#