How do you find the derivative of #5=3e^(xy)+x^2y+xy^2#?

1 Answer
Oct 27, 2016

# dy/dx = -(3ye^x+2xy+y^2)/(3e^x+ x^2+ 2xy) #

Explanation:

We need to use implicit differentiation and the product rule;
# d/dx(uv)=u(dv)/dx+v(du)/dx #

# 5=3e^xy+x^2y+xy^2 #

# :. 0=3{e^xd/dxy+yd/dxe^x} + {x^2d/dxy+yd/dxx^2} + {xd/dyy^2+y^2d/dxx} #

# :. 0=3{e^xdy/dx+ye^x} + {x^2dy/dx+y(2x)} + {x(2ydy/dx)+y^2} #

# :. 0=3e^xdy/dx+3ye^x + x^2dy/dx+2xy + 2xydy/dx+y^2 #
# :. {3e^x+ x^2+ 2xy}dy/dx = -(3ye^x+2xy+y^2) #
# :. dy/dx = -(3ye^x+2xy+y^2)/(3e^x+ x^2+ 2xy) #